Primitive Representations by Unimodular Quadratic Forms

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving quadratic equations using reduced unimodular quadratic forms

Let Q be an n × n symmetric matrix with integral entries and with detQ = 0, but not necesarily positive definite. We describe a generalized LLL algorithm to reduce this quadratic form. This algorithm either reduces the quadratic form or stops with some isotropic vector. It is proved to run in polynomial time. We also describe an algorithm for the minimization of a ternary quadratic form: when a...

متن کامل

Representations of Integers by Ternary Quadratic Forms

We investigate the representation of integers by quadratic forms whose theta series lie in Kohnen’s plus space M 3/2(4p), where p is a prime. Conditional upon certain GRH hypotheses, we show effectively that every sufficiently large discriminant with bounded divisibility by p is represented by the form, up to local conditions. We give an algorithm for explicitly calculating the bounds. For smal...

متن کامل

Applications of quadratic D-forms to generalized quadratic forms

In this paper, we study generalized quadratic forms over a division algebra with involution of the first kind in characteristic two. For this, we associate to every generalized quadratic from a quadratic form on its underlying vector space. It is shown that this form determines the isotropy behavior and the isometry class of generalized quadratic forms.

متن کامل

Rational Representations of Primes by Binary Quadratic Forms

Let q be a positive squarefree integer. A prime p is said to be q-admissible if the equation p = u2 + qv2 has rational solutions u, v. Equivalently, p is q-admissible if there is a positive integer k such that pk2 ∈ N , where N is the set of norms of algebraic integers in Q( √ −q). Let k(q) denote the smallest positive integer k such that pk2 ∈ N for all q-admissible primes p. It is shown that ...

متن کامل

On Representations of Integers by Indefinite Ternary Quadratic Forms

Let f be an indefinite ternary integral quadratic form and let q be a nonzero integer such that −qdet(f) is not a square. Let N(T, f, q) denote the number of integral solutions of the equation f(x) = q where x lies in the ball of radius T centered at the origin. We are interested in the asymptotic behavior of N(T, f, q) as T → ∞. We deduce from the results of our joint paper with Z.Rudnick that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 1993

ISSN: 0022-314X

DOI: 10.1006/jnth.1993.1060