Primitive Representations by Unimodular Quadratic Forms
نویسندگان
چکیده
منابع مشابه
Solving quadratic equations using reduced unimodular quadratic forms
Let Q be an n × n symmetric matrix with integral entries and with detQ = 0, but not necesarily positive definite. We describe a generalized LLL algorithm to reduce this quadratic form. This algorithm either reduces the quadratic form or stops with some isotropic vector. It is proved to run in polynomial time. We also describe an algorithm for the minimization of a ternary quadratic form: when a...
متن کاملRepresentations of Integers by Ternary Quadratic Forms
We investigate the representation of integers by quadratic forms whose theta series lie in Kohnen’s plus space M 3/2(4p), where p is a prime. Conditional upon certain GRH hypotheses, we show effectively that every sufficiently large discriminant with bounded divisibility by p is represented by the form, up to local conditions. We give an algorithm for explicitly calculating the bounds. For smal...
متن کاملApplications of quadratic D-forms to generalized quadratic forms
In this paper, we study generalized quadratic forms over a division algebra with involution of the first kind in characteristic two. For this, we associate to every generalized quadratic from a quadratic form on its underlying vector space. It is shown that this form determines the isotropy behavior and the isometry class of generalized quadratic forms.
متن کاملRational Representations of Primes by Binary Quadratic Forms
Let q be a positive squarefree integer. A prime p is said to be q-admissible if the equation p = u2 + qv2 has rational solutions u, v. Equivalently, p is q-admissible if there is a positive integer k such that pk2 ∈ N , where N is the set of norms of algebraic integers in Q( √ −q). Let k(q) denote the smallest positive integer k such that pk2 ∈ N for all q-admissible primes p. It is shown that ...
متن کاملOn Representations of Integers by Indefinite Ternary Quadratic Forms
Let f be an indefinite ternary integral quadratic form and let q be a nonzero integer such that −qdet(f) is not a square. Let N(T, f, q) denote the number of integral solutions of the equation f(x) = q where x lies in the ball of radius T centered at the origin. We are interested in the asymptotic behavior of N(T, f, q) as T → ∞. We deduce from the results of our joint paper with Z.Rudnick that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 1993
ISSN: 0022-314X
DOI: 10.1006/jnth.1993.1060